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A penetrative convection problem which depends on the density maximum of 
water near 4 "C is solved numerically. When a layer of water has its lower bound- 
ary maintained at 0 "C and its upper boundary at  some temperature above 4 "C, 
the layer will be divided into a lower convectively unstable region and an upper 
convectively stable region. Steady-state finite-amplitude solutions to this prob- 
lem are obtained using the mean field approximation and free boundaries. 

Convective mixing alters the temperature structure of the layer so that the 
temperature of a large fraction of the layer is slightly below the temperature of 
maximum density, in agreement with laboratory measurements. The largest 
motions are found in a principal convective cell which extends from the lower 
boundary to a temperature of 7" or 8°C. Above the principal cell one or more 
counter cells may form, depending on the temperature of the upper boundary. 
The velocities in the counter cells are substantially less than those in the principal 
cell and fall off rapidly going upward. When the temperature of the upper bound- 
ary is 7 "C or higher, convection first takes place at a finite amplitude and at  a 
Rayleigh number less than that predicted by the linear theory. When the tem- 
perature of the upper boundary is 10°C or higher, the upper boundary is no 
longer important dynamically to the system. 

As the Rayleigh number is increased above critical stability the velocities in 
the principal cell, heat transport and the distortion of the temperature field 
all increase. In  addition, the principal cell becomes more slender and fills a 
greater fraction of the layer. Also, as the Rayleigh number increases the counter 
cells become more flattened, fill a smaller fraction of the layer, and the velocities 
in the counter cells decrease relative t o  those in the principal cell. 

The most important penetration of convective motions takes place in the form 
of nearly horizontal motions in the lowest part of the stable region, corresponding 
to the upper part of the principal cell. The velocities of these motions are a large 
fraction of the largest vertical velocities in the unstable region. 

1. Introduction 
There are several cases in geophysics and astrophysics where the penetration 

of convective motions into an overlying convectively stable region is important. 
One such case is the observable motions in the outer stable regions of the 
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sun (summarized by Leighton 1963). These motions presumably arise from 
the solar convective zone which is just below them. Another case is the 
dynamics of cumulus clouds studied by Simpson, Simpson, Andrews & Eaton 
(1965). 

Malkus (1960) proposed the following method for studying penetrative 
convection in the laboratory: the lower boundary of a layer of water is maintained 
at a temperature of 0 "C and the upper boundary at  a temperature higher than 
4 "C. The region below the density maximum of water near 4 "C is convectively 
unstable, while the region above the density maximum is convectively stable. 
Convective motions occurring in the lower unstable region may penetrate into 
the upper stable region. This experiment has been performed in the laboratory 
by Furumoto & Rooth (1961) and Townsend (1964). It has also been discussed 
theoretically by Veronis (1963). 

In  ordinary parallel plate convective experiments (such as Globe & Dropkin 
1959) the material boundaries of the laboratory container strongly influence 
the motions of the convecting fluid. The largest changes take place in thin layers 
near the boundaries, and the form of the heat transport law may be predicted 
from a scale analysis which does not include the thickness of the layer. In the 
ice-water problem the extent that the convective motions penetrate into the 
upper stable region does not depend on the upper boundary when the stable 
region is sufficiently thick. This feature of the ice-water experiment makes it 
useful for studying situations where no solid boundary exists. 

Steady-state solutions to this problem will be found numerically using free 
boundaries and the mean field approximation (Herring 1963), which includes 
certain nonlinear terms but neglects nonlinear terms generally associated with 
turbulence. These solutions will be compared with laboratory results and the 
effect of the approximatioiis used will be discussed. 

2. Derivation of equations 
The basic dynamical equations of the problem are the Navier-Stokes equation 

av 1 g - + (V .V) v = - -v sp - - sp E + V V V ,  
at P P 

the continuity equation v.v  = 0, (2) 

and the heat equation g + V . V T  at = K V T .  (3) 

Equations ( l ) ,  (2), (3) are written for an incompressible fluid of mean density 
p where v is the velocity vector, g is the acceleration of gravity, E is a unit vector 
in the vertical direction, v is the dynamical viscosity, T is the temperature, and 
K is the thermometric conductivity. Hydrostatic pressure and density have 
been removed from ( l ) ,  leaving only the changes in pressure and density Sp, Sp 
associated with the motion. The Boussinesq approximation is assumed ; i.e. 
changes in density, Sp, are considered to be a function of temperature alone 
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and taken into account only in the buoyancy term. It is convenient t o  transform 
equations (l), (2), (3) into 

( lw-g)  V2W+{V x v  x (V.V)V}, = 9 -0; 6p, 
P 

aT' aF 
- + w ~ + { V . V T ' - V . V T ' )  at = K V ~ T ' ,  

where w is the vertical component of the velocity and the operator V2, is the 
horizontal Laplacian operator (a2/ax2)  + (3/ay2). Equation (4) is obtained by 
operating on (2) twice with the curl operator and taking the vertical component. 
Equations (5) and (6) have been derived from (3) together with the substitution 

T(X, Y, 2, t )  = m, t )  + T f b ,  Y, z, t ) ,  (7) 

which divides the temperature field into a mean component and a fluctuating 
component T'. When ( 7 )  is substituted into (3) and the horizontal average taken, 
denoted by a horizontal bar, equation ( 5 )  results. Subtracting (5) from (3) yields 
equation (6). The dependent variables in the system of equations (4)-(6) may be 
divided into mean quantities with non-zero horizontal averages and fluctuating 
quantities whose horizontal average is zero. F is a mean quantity, while T' and 
all components of the velocity are fluctuating quantities. In  the mean field 
approximation (see Herring 1963) nonlinear interactions between mean and 
fluctuating quantities are taken into account, while nonlinear interactions 
between fluctuating quantities are ignored. The terms in brackets in (4) and (6) 
are fluctuating interactions. 

Free, conducting boundaries will be used at  the bottom and the top of the 
layer, 

where z is the vertical co-ordinate and his the thickness of the layer. The bottom 
boundary will be maintained at  0°C and the upper boundary at  a higher 
temperature T = O  at z = O ;  T = h A T  a t  z = h ,  

where AT is the difference between 0 "C and the temperature of maximum density 
near 4 "C and h is a parameter designating the temperature of the upper bound- 
ary. The equation of state of ice water will be taken as 

(9) 

p = p[1- a(T - To)2], (10) 

where To = 3.98 "C and a = 8.0 x 10-+/(degC)2. Equation (10) fits the measured 
density of ice water within 4 yo between 0" and 8 "C and is off by 20 yo at 24 "C. 
The buoyancy term on the right-hand side of equation (4) may be expanded with 
the help of equations (7)  and (10) into 

2ag - 
!02,6p = -T[(T-To)V;T'+frV;T'2]. 
P P 
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The second term on the right-hand side of equation (1 1) is a fluctuating inter- 
action and will be subsequently neglected. The dimensionless number describing 
the degree of convective instability, the Rayleigh number, will be defined as 
follows : 

where Ap is the difference in density in the unstable portion of the layer and 1 
is the height of the unstable portion of the layer. Equation (12) differs from the 
conventional definition by a factor of n4. In evaluating the Rayleigh number the 
following relationships are useful : 

AP 1 = h, - = (2h--h2)aAT2 for 0 < h < 1,) 

I = !   AT^ for A >  1.  

P 

A’ p I 

When (4) is non-dimensionalized using hln, h/n2K and h AT/n for units of length, 
time a.nd temperature the following results : 

where 8 is the non-dimensional form of T and is the Prandtl number, the 
quantity in brackets multiplying V? 8 corresponds to ( F  - To), and $, a function 
of z and t ,  represents the departure of the mean temperature profile from a straight 
line. Steady-state solutions will be found of the form 

w = f ( % Y )  W ( z ) ,  

8 = f(x, Y) @(z). 

V$ f = - sy, 
f= 0, 

J;2= 1, 

The function f has the following properties: 

where s is a normalized horizontal wave-number. Solutions chosen in this manner 
have a regular horizontal form. Specific expressions for f have been worked out 
for various types of cells, such as a convective roll, square cell, hexagonal cell, 
or cylindrical cell. For a convective roll 

f = J2sinsx. (21) 
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The horizontal and vertical components of the velocity for this case are: 

w = 43 sin sx W(z) .  

Equations (14) and (6) become for the convective roll 

(35) 

Equations (24) and (25) will be used to estimate the effect of ignoring the fluctu- 
ating interactions. The three fluctuating interactions in equations (24) and (25) 
all contain the factor cos2sx and arise from the coupling of the fundamental 
horizontal mode into the next higher horizontal mode which is ignored by assum- 
ing (18). Equations (24) and (25) cannot be used to deal with the fluctuating 
interactions in a self-consistent manner as the coupling of the next higher 
horizontal mode into the fundamental mode is ignored. 

The final set of equations to be solved which neglects fluctuating interactions is 

(&-s2) W = D,  

h (g - s2) D = B( A )  Rs2 [ - 1 + - ( x  + q+)] 0, 

(g-s2)0 = ( 1 + Z )  w, 

7r 

d 
dz2 dz 
3 = - ( W @ ) ,  

with boundary conditions 

W,D,q+,O = 0 at z = 0 , ~ .  (30) 

Equations (26) and (27) are derived from equation (14) with the addition of the 
auxiliary variable D which is defined in equation (26). 

The system of equations (26)-(29) is a system of ordinary differential equations 
obtained from the system of partial differential equations (1)-( 3). If the velocity 
and temperature fields are thought of in terms of normal modes, only one mode 
has been included in the horizontal, while a large number of modes have been 
included in the vertical (in practice limited by the integration step size). Useful 
results can be obtained in this manner since the largest changes take place in 
thin layers near the upper and lower boundaries. The system of equations (26)- 
(29) reduces to those solved by Herring (1963) when h = 0 and the signs of the 
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temperature variables $, 0 are changed. The choice of signs for temperature 
quantities is related to the fact that the fluid rising from the bottom boundary 
in the ice-water problem is colder than its surroundings while the opposite is true 
in ordinary convective problems. Equation (28) is exact and expresses the fact 
that the divergence of the total flux vanishes. I ts  integral, 

d$ N =  l + - - W O ,  
dz 

states that the total horizontally averaged flux N ,  expressed in units of the flux 
which would be conducted between the two boundaries without convection (the 
Nusselt number), is conserved at  all levels. The first two terms on the right-hand 
side of (3 1) are the conductive flux and the third is the convective flux. Equations 
(24), (27) and (29), with the omission of 3,  are the linearized stability equations 
oftheproblem, which have beensolvedby Veronis (1963). 

The system of equations (26)-(29) forms an eighth-order system of nonlinear 
ordinary differential equations with boundary conditions given at two different 
points. The solution is obtained by an iterative technique. First an approximate 
solution is chosen, substituted into the original equations, and the residuals are 
computed. Then the equations are linearized about the approximate solution 
and a system of linear equations is solved to find the corrections to the original 
solution which could eliminate the residuals. The corrections or an appropriate 
fraction of them are added to the original approximation and the process re- 
peated until the corrections become very small. The procedure is essentially the 
Newton-Raphson technique; described by Fox (1957) as the ‘7 ’ method. The 
procedure also resembles that used by Henyey et al. (1959) for constructing stellar 
models. In practice a very large matrix, with non-zero elements concentrated 
along a narrow band near the diagonal, must be inverted. This is accomplished 
by a Gaussian elimination procedure where the form of the equations has been 
chosen in order to well condition the matrix. 

Computations were begun for h = 0 and a Rayleigh number just above the 
critical Rayleigh number. Analytic expressions similar to those derived by Malkus 
& Veronis (1958) were used as the initial approximations. Several solutions of 
Herring (1963) were reproduced to check numerical procedures. Then A and R 
were increased slowly, using at each step previously converged results for initial 
approximations. Near h = 3 oscillations developed in the iteration with a period 
of about 25 iteration steps. It is not clear whether these oscillations are numerical 
or physical. The physical system can oscillate in the form of internal gravity 
waves. It was necessary to damp out these oscillations by an elaborate and arbi- 
trary procedure in order to obtain convergence. 

3. Results and discussion 
The naticre of the solutions and the jinite instability 

The calculated mean temperature profile for A = 6, R = 5, s = 1.7 is plotted as 
a solid line in figure 1. If convection did not take place the temperature distribu- 
tion would be determined by conduction alone, represented by the broken line 
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in figure 1. Convective motions, when they do occur, tend to bring the tempera- 
ture distribution closer to the adiabatic one. For an incompressible fluid the 
adiabatic temperature distribution is a constant temperature. The temperature 
of most of the layer is just below that of maximum density, and hence just slightly 
unstable. The dashed line is the laboratory measurement of Townsend (1964). 
The detailed agreement between theory and observations will be discussed later. 

2/77 

FIGURE 1. Mean temperature profile. -, h = 6, R = 5, s = 1.7; 
, linear, ---, measurements of Townsend (1964). 

The calculated velocity and temperature fields for h = 6, R = 2.5, s = 1.65 
are shown in figure 2. These are represented in terms of the cross-section of a 
convective roll, although the mean field equations do not distinguish between 
the various types of horizontal plan forms. The left-hand portion of figure 2 
displays contours of equal stream function, which in the steady state are also 
particle paths. There is one principal cell and two counter cells above it. The 
vertical motion on the right-hand side of these cells is upward in the principal 
cell, downward in the first counter cell, and again upward in the second counter 
cell. The velocities are much smaller in the counter cells than in the principal 
cell so that it was not possible to plot contours uniformly throughout the entire 
region. The number in the centre of each cell is the maximum vertical velocity 
in that cell. The contours plotted are equal fractions of the maximum stream- 
function for that cell. 

Contours of equal temperature are plotted in the right-hand portion of 
figure 2 for every degree centigrade from 0 at the bottom to 24 at the top. It can be 
seen by comparing the left- and right-hand portions of figure 2 that the principal 
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cell penetrates into the stable region. The mean temperature of the top of the 
principal cell is 7-5 "C, substantially above the temperature of maximum density. 
The largest horizontal temperature differences are found near the top and 
bottom of the principal cell. If the nature of the velocity and temperature fields 
for the principal cell shown in figure 2 are compared with those obtained by 
Rayleigh (1916) for the case of the marginal convective stability of a layer of an 
ordinary fluid, it  is found that the velocity fields are very similar, while the tem- 
perature fields are substantially different. The velocity and temperature fields 
for the principal cell also closely resemble the results of Herring (1963). 

j 0.13 I I 

FIGURE 2. Velocity and temperature fields for h = 6, R = 2.5, s = 1.65. On the left stream- 
lines of the motion with the maximum vertical velocities indicated for each cell. On the right 
contours of equal temperature for every degree centigrade from 0 at the bottom to  24 at 
the top. 

The normalized horizontal wave-number, s, which for the convective roll is 
simply the ratio of the thickness of the layer to the width of the cell, is chosen to 
maximize the heat transport. Figure 3 shows the variation of heat transport with 
s for h = 3. For a given Rayleigh number, R, the Nusselt number is plotted as a 
solid line against s. This can be compared directly with figure 15 in Herring 
(1963). The dotted line shows the maximum Nusselt number, N ,  obtainable for 
a given R. The point at the centre of the solid curves with parameters R = 1.84, 
s = 1.16 was the lowest R for which a solution was attained. No solutions were 
obtained below the dashed line in figure 3. The point at  N = 1 (i.e. no convection) 
with parameters R = 2.82, s = 1.52 is the critical Rayleigh number predicted by 
the linearized stability theory. 
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This feature may also be seen in figure 4, where the Nusselt number is plotted 
against the Rayleigh number for h = 6; each point on the solid line of figure 4gives 
the maximum Nusselt number at  that Rayleigh number (given by a point on the 
dotted line in figure 3). The critical Rayleigh number for the linearized problem 
is also represented by a point at  N = 1 in figure 4. A dashed curve connects this 
point and the solutions obtained. Attempts to obtain solutions along this dashed 
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FIGURE 4. Heat transport versus Rayleigh number for h = 6. 



352 Steven Mumnan 

curve were unsuccessful. All initial approximations used converged either 
to the trivial solution or to the solution given by the solid line in figure 4. It is 
likely that, for Rayleigh numbers between the critical Rayleigh number for the 
linear problem and the minimum Rayleigh number obtained, there are two 
possible solutions, one small-amplitude and small Nusselt number solution 
represented by a point on the dashed part of the curve in figure 4 and one large- 
amplitude and larger Nusselt number solution represented by a point on the solid 
part of the same curve. The physically realizable (and also numerically stable) 
solution is the one with the largest heat transport. Convection first takes place 
at  a finite amplitude and at  a Rayleigh number below that predicted by the 
linear theory. Veronis (1963) first demonstrated that the ice-water problem had 
a finite convective instability and predicted the nature of the curve in figure 4. 
For a discussion of another example of a finite convective instability see Veronis 
(1966). 

An important feature which the nonlinear theory takes into account and which 
is omitted by the linear theory is the distortion of the mean temperature profile. 
For example, compare the solid curve in figure 1 with the broken line. The de- 
finition of the Rayleigh number, equation (12), contains the height of the un- 
stable portion of the layer. For the case plotted in figure 1, this distance is 
4.3 times as large for the distorted profile as for the linear profile. If a quantity r 
is defined as the ratio of these two distances, then an effective Rayleigh number 
RE, which takes into account the actual height of the unstable layer, can be 
expressed as RE = r3R. 

For the case plotted in figure 1, R is 5 and RE is 406. 
The results of both the linear and the nonlinear stability analyses for the ice- 

water problem are displayed in figure 5.  The solid line represents the results of the 
linear problem, which is an extension of the results given by Veronis (1963). For 
h < 1, where there is no stable layer, the initial Rayleigh number is always close 
to the h = 0 critical Rayleigh number of 3$ (y7r4 in conventional units). The 
initial sharp drop in Rayleigh number for h slightly greater than unityresults from 
the fact that a very thin stable layer near the upper boundary is constrained to 
move nearly horizontally while buoyancy forces can only effect vertical motions. 
The dotted line plotted in figure 5 has the equation 

( 32) 

R = 6.71/h3. (33) 

This would describe the critical Rayleigh number if the critical Rayleigh number 
were always equal to the critical Rayleigh number at h = 1, but the entire thick- 
ness of the layer acts as if it  were unstable. As h increases, and the thickness 
of the stable layer increases relative to the unstable layer, the stable layer is less 
constrained to move vertically and thus can exert a stabilizing influence on the 
system so that the critical Rayleigh number becomes further above the dotted 
line. 

When the temperature of the upper boundary is less than about 7 "C, convection 
first appears at an infinitesimal amplitude, and the critical Rayleigh number is 
that given by the linear theory. However, as h increases above this level, con- 
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vection f i s t  appears at  a finite amplitude at  a lower Rayleigh number than that 
given by the linear theory. The critical Rayleigh number given by the nonlinear 
theory is plotted in figure 5 as the lower dashed curve. The critical effective 
Rayleigh number is plotted as the upper dashed curve. Since the difference 
between these curves is a measure of the distortion of the mean temperature 
profile, it is apparent that the distortion of the mean temperature profile at  
marginal stability increases as h increases. The difference between the critical 

10 

R 
3 

1 

I I I I 
1 2 4 

h 

FIGURE 5. Linear and nonlinear stability. -, critical Rayleigh number for linear theory; 
-__  , nonlinear results: critical Rayleigh number (lower curve) and critical effective Ray- 
leigh number (upper curve). 

Rayleigh number predicted by the linear theory and that predicted by the non- 
linear theory is probably related to  the fact that the linear theory omits the dis- 
tortion of the mean temperature profile. It is not possible to charact.erize either 
the critical R or RE for the nonlinear case by a single number. For h greater than 
2.5 the Nusselt number is always near 1.4 at marginal stability and decreases 
very slowly for h greater than 4. 

The injuence of h and R 
The concept of an effective Rayleigh number, equation (32), is useful in comparing 
results for different A. Figure 6 displays velocity and temperature fields h = 3, 
R = 10, s = 1-35 in a manner similar to figure 2. The two cases have the same 
effective Rayleigh number but different upper boundary temperature. In  physi- 

23 Fluid Mech. 31 
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cal terms both have the same distance between the bottom boundary and the 
height of maximum density, since all other quantities defining the Rayleigh 
number, equation (12)) are either physical or mathematical constants. Figures 2 
and 6 have been constructed with this distance the same for both. The mean 
temperature profile between 0 and 12°C is almost the same for both cases. In  
addition an effective Nusselt number defined in a manner similar to the effective 
Rayleigh number, 

N, = m i l T ,  (34) 

I C -0.16 -> 

1 

FIGURE 6. Velocity and temperature fields for h = 3, R = 10, s = 1.35. 

is the same for both cases. The maximum vertical velocity in the principal cell, 
when expressed in physical units, is nearly the same for figures 2 and 6. However, 
the velocity and horizontal temperature fieIds are slightly different, as they must 
be since the upper boundary conditions are different in the two cases. When other 
cases are examined which have the same RE but different A, it can be concluded 
that the nature of the principal cell is determined by RE alone and is independent 
of the temperature of the upper boundary as long as the upper boundary is 
sufficiently high. 

The number of counter cells depends on the amount of stable layer available. 
When h is 2 or less no counter cells form. When h is between 2.2 and 4 one 
counter cell is present. For a h of 5 or 6 there are two counter cells. If h = 7 the 
stable layer contains three counter cells. These cells are not important to the 
system dynamically. The motions and temperature differences in the counter cells 
are much smaller than those in the principal cell and result from the fact that 
the motion in an incompressible fluid will fill the entire available region. 

A curve of Ah, defined in (341, versus RE, defined in (32), is plotted in figure 7. 
This curve has a similar form to the plot of Nusselt number versus Rayleigh 
number for laboratory results in figure 5 of Silveston (1958). The cases shown in 
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figures 2 and 6 are both represented by the point NE = 9.1, RE = 138 in figure 7. 
The location of critical stability for various A's are also indicated (compare with 
the upper dashed curve in figure 5). For h less than 2.5 the curve in figure 7 
refers only to critical stability. When the stable portion of the layer is this narrow, 
the upper boundary is still important in determining the heat flux. Results for 
h less than 2.5 but RE greater than the critical value lie near but not on the curve 
in figure 7. For h greater than or equal to 2.5 this curve represents the effective 

R E  

FIGURE 7. Effective heat transport versus effective Rayleigh number. 

heat flux for all A's for which the system is convectively unstable at  that particu- 
lar effective Rayleigh number. Thus, once the upper boundary is at least 10 "C, the 
nature of the principal cell is determined by the effective Rayleigh number, and 
hence the heat transport is also determined as the motions and temperature 
differences in the counter cells are too small to contribute significantly to the 
transport. The point at  which the upper boundary becomes unimportant in 
determining the heat transport is also the point at which the first counter cell is 
just beginning to form, and it seems that the formation of at  least one counter 
cell is essential in isolating the principal cell from the upper boundary. 

The effect of varying the Rayleigh number will now be examined. Figure 8 
shows the velocity and temperature fields for h = 6, R = 1.017, 5 = 1.72. This 
is the critical Rayleigh number for an upper boundary temperature of 24OC; 
no smaller-amplitude motions are possible. Figure 8 may be compared directly 
with figure 2 ,  which shows conditions for the same upper boundary temperature 
but at  a higher Rayleigh number. As the Rayleigh number is increased the velo- 
cities in the principal cell become larger, the temperature field is more dis- 
torted, and the heat transport increases. This effect can be further seen in figure 9, 
which presents the velocity and temperature fields for h = 6, R = 12, s = 1.85. 
The effective Rayleigh numbers for figures 8, 2 and 9 are respectively that of 

23-2 
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FIGURE 8. Velocity and temperature fields for h = 6, R = 1.017, 
s = 1-72. 

FIGURE 9. Velocity and temperature fields for h = 6, R = 12, 
s = 1.85. 
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critical stability and roughly 10 and 100 times critical stability. Comparing these 
three figures gives a good general picture of the effect of varying the Rayleigh 
number on the ice-water system. 

The normalized horizontal wave-number, s, is not very sensitive to the Ray- 
leigh number. Thus for a convective roll the ratio of the height of the layer to the 
width of the cell does not change much for a given A. However, the fraction of 
the layer occupied by the principal cell increases rapidly with increasing Rayleigh 
number. For the cases presented in figures 8, 2 and 9 the principal cell occupies 
respectively 48, 71 and 850/0 of the layer. Thus if a quantity s', similar t o  s, is 
defined with respect to the principal cell alone it would increase monotonically 
with increasing Rayleigh number. For a convective roll s' is the height to width 
ratio of the principal cell. The values of s' for the cases illustrated in figures 8, 2 
and 9 are 0.65, 1.04 and 1.48. Also s' depends only on RE for all h greater than 
2.5. The value of s' at critical stability in figure 8 is close to that of 0.71 obtained 
by Rayleigh (1916) for the critical stability of the ordinary parallel plate convec- 
tion problem. 

As the shape of the principal cell becomes more elongated with increasing 
Rapleigh number, the shape of the counter cells becomes more flattened. The 
velocities in the counter cells become smaller compared with the velocities in 
the principal cell. The maximum vertical velocities for the three cells in the case 
illustrated in figure 8 are in the ratio 1:  1.0 x 10-I: 1.1 x The same ratios for 
the cases shown in figures 2 and 9 are 

1 : 4.8 x 5.9 x 10-3 and 1 : 2.6 x 10-2: 9.1 x 10-6. 

For Rayleigh numbers larger than that shown in figure 9, the second counter 
cell disappears (or at  least becomes smaller than the integration step size). 

The temperature at the top of the principal cell is a measure of the penetration 
of the motions into the stable layer. This quantity increases only slightly with 
increasing Rayleigh number. The temperatures at the top of the principal cell 
for the three cases illustrated in figures 8, 2 and 9 are respectively 6.8", 7.5" 
and 8.0 "C. The difference in density between the maximum density and that at  
the top of the principal cell is always comparable to the difference in density 
between that at  the bottom of the cell and the maximum density. The largest 
motions in the stable portion of the layer are the horizontal motions at  the top 
of the principal cell. The amplitude of these motions is a large fraction of the 
largest vertical velocity in the principal cell. Townsend (1964) observed horizontal 
motions in the lowest part of the stable region. The calculated results do not show 
any large vertical velocities in the stable region. Vertical motions in the stable 
region would require doing work against buoyancy forces. The essential energy 
balance is between energy released by buoyancy forces and viscous energy 
dissipated in the principal cell. The counter cells do not contribute significantly 
to the energy balance. 

The behaviour of the system at very large Rayleigh number appears to ap- 
proach one very slender principal cell with negligible or non-existent counter 
cells. However, caution must be used in interpreting the cell shape predicted at  
large Rayleigh numbers by the mean field approximation (see the discussion 
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by Deardorff & Willis 1965). Also the upper boundary could become important 
at high Rayleigh numbers. 

At high Rayleigh numbers the effective Nusselt number can be described 

A similar expression can be obtained at each h relating the ordinary Nusselt 
number and the ordinary Rayleigh number (compare the upper right-hand por- 
tions of figures 4 and 7). 

closely by NE = 1.88RL. (35) 

Comparison with experiment 

The velocities in the ice-water problem are small and difficult to measure in the 
laboratory. It is more practical to measure temperatures. Two convenient quanti- 
ties to compare with theoretical calculations are the mean temperature profile 
and the heat transport, both of which were measured by Townsend (1964). 
However, calculations discussed here employed for simplicity a free (slip} 
boundary at the bottom of the layer. For direct comparison with experiment it 
would be necessary to use a rigid (non-slip) lower boundary. The details of the 
upper boundary would probably not be important. The calculated mean tem- 
perature profile in figure 1 has the same effective Nusselt number as the measured 
profile; that is, the initial point, the initial slope and the point at 4 "C are the same 
for both curves. Agreement at  other points in the unstable region is favourable. 
Agreement in the stable portion of the layer is not as favourable. The temperature 
distribution in the stable region is determined principally by conductive heat 
transport. The laboratory measurements indicate that a large fraction of the 
heat transported through the lower boundary must have entered the system 
through the sides of the apparatus and not through the upper boundary, while 
the calculations assume that all heat enters the system at the upper boundary. 
For this reason good agreement is not to be expected between the calculated and 
observed results in the stable region. 

A rough comparison of the heat flux at  a given Rayleigh number for the calcu- 
lated and measured results can be obtained as follows: Herring (1963, 1964) 
derived expressions of the form of equation (35) for the heat flux in the ordinary 
parallel plate convection problem for both free and rigid boundaries. The 
proportionality constant is a factor of 2.7 times smaller for the rigid boundary 
case than for the free boundary case, since a rigid boundary restricts fluid 
motions more than a free boundary. If the introduction of a rigid lower boundary 
into theice-water problem lowers the heat transport in (35) by the same factor, the 
effective Rayleigh number of 46,000 for the experimental case would lead to a n  
effective Nusselt number of 25. This is 1.9 times the measured value of 13. This 
method probably overestimates the heat flux since the effect of introducing a 
rigid boundary into the ice-water problem is probably more important than in 
the ordinary parallel-plate convection problem, as the additional restriction to 
the motions is applied just at th8 point where the fluid is most buoyant. 

Equations (24) and (25) were used to estimate the importance of the three 
neglected fluctuating interactions. All of the fluctuating interactions were 
much more important in the principal cell than in the counter cells. The ratio of 
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the root mean square average of a neglected fluctuating term to the root mean 
square average of the term retained in the same equation was taken as a measure 
of the importance of a particular fluctuating interaction. There is a general 
tendency for the importance of the fluctuating interactions to increase with 
increasing h and R. The second term in equation (24) which can be related 
physically to turbulent momentum transport is generally a factor of at least 
ten less than the term retained. This results from the fact that this term is multi- 
plied by the reciprocal of the Prandtl number, and the Prandtl number of 
water is 11.5 at 4 'C. The second term in equation (25 ) ,  which can be associated 
physically with turbulent heat transport, is comparable with the term retained 
except at  low h and R. The O2 term in equation (25 )  was the most troublesome, 
always within a factor two of the term retained, and was relatively insensitive 
to changes in h and R. When this term is neglected, the buoyancy of the rising 
portion of a convective cell is equal to that of the descending portion. When this 
term is included, the buoyancy force is increased for the rising portion of the cell 
but decreased for the descending portion. For either the convective roll or the 
rectangular cell, this term does not modify the energy integral of the problem, 
so that this term appears to alter the nature of the buoyancy force but not the 
total amount. That the O2 term is important may be seen from the case illustrated 
in figure 8, where most of the descending portion of the principal cell is slightly 
stable, so that the effect of including this term could make the descending portion 
of the cell actually work against the buoyancy force. Thus the energy to power 
the cell would have to come from the upward motion. 

The mean field approximation forces the motions into a regular pattern of 
BBnard-like cells. This is a considerable idealization of the actual situation. 
Townsend (1964) interprets the variations of temperature in the unstable portion 
of the layer as caused by isolated rising convective elements, with no observed 
descending elements. This is probably related to the fact that the fluctuating 
term in the buoyancy, which was neglected in this investigation, destroys the 
symmetry between upward and downward motions. In addition, the largest 
temperature fluctuations in the laboratory were found just at the bottom of the 
stable region. Townsend (1964) interprets this in terms of internal gravity waves 
caused by rising convective elements running into the stable region. Also, 
internal gravity waves may be related to the oscillations which made convergence 
so cumbersome in this investigation. Finding steady-state solutions to this 
problem using the mean field approximation eliminates the possibility of obtain- 
ing any information about small-scale, time-dependent or turbulent phenomena. 

Even though it was not possible to show formally that all terms neglected 
are small, agreement with experiment was favourable, in so far as comparison 
with experiment was possible. Herring (1964) also obtained favourable agreement 
with experiment using the mean field approximation for the ordinary parallel- 
plate convective problem. The mean field approximation should still give useful 
information about averaged properties of the ice-water system. 
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Summary of results 

The solutions obtained show the following general properties of the ice-water 
system. 

(i) Convective instability takes place at  a finite amplitude. 
(ii) Convective motions substantially alter the temperature structure of 

the layer. 
(iii) When the temperature of the upper boundary is sufficiently high the 

upper boundary is not important dynamically. 
(iv) The important penetration of convective motions into the stable region 

takes place in the form of nearly horizontal motions at the bottom of the stable 
region. 

These general properties probably do not depend on the mean field approxima- 
tion. 

Comments by Dr W. V. R. Malkus, Dr C. Rooth and Dr G. Veronis were very 
helpful in this investigation. Mr Ira Kaskel produced the computer-drawn 
contour plots. 
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